
project-name Documentation
Release 0.1.0

author

Jan 27, 2021

Contents:

1 Helm 3
1.1 Update chart settings. 3

2 SKAMPI - SKA Mvp Prototype Integration 5
2.1 K8s Concepts . 5
2.2 KubeCtl references . 5
2.3 K8s Templates . 6
2.4 K8s Tags . 6

3 Environments 9
3.1 Test environment . 9
3.2 Staging environment . 9

4 Deployment 11
4.1 Flavours . 11
4.2 Parameters . 12
4.3 Forward Oriented Deployment . 13

5 Testing SKAMPI 15
5.1 Minikube Testing Environment - EngageSKA Openstack . 15
5.2 Kubernetes Testing Environments . 17
5.3 Visual Studio Code Remote Access . 18
5.4 Testing Infrastructure as Code . 20

6 Triaging and managing Skampi bugs 27
6.1 Problem identification . 27
6.2 Allocating ownership to teams . 28
6.3 Raising bugs . 28

7 Running X based application on SKAMPI 29
7.1 OPTION #1 . 29
7.2 OPTION #2 . 29
7.3 OPTION #3 . 30

8 A&A 31
8.1 Static File Authentication . 31
8.2 OpenID Connect Tokens Authentication . 31

i

9 Authorization 33
9.1 RBAC . 33
9.2 ABAC . 33

10 KUBECONFIG 35

11 Available resources 37
11.1 Makefile targets . 37
11.2 Ansible . 38

12 SKA Integration on Kubernetes 39

13 Minikube 41
13.1 Helm Chart . 42
13.2 Cleaning Up . 42
13.3 Running the SKA Integration on Kubernetes . 43

14 Indices and tables 47

Bibliography 49

ii

project-name Documentation, Release 0.1.0

This project defines the integration between various component repository on Kubernetes.

Contents: 1

project-name Documentation, Release 0.1.0

2 Contents:

CHAPTER 1

Helm

Helm is a tool for managing Kubernetes charts. Charts are packages of pre-configured Kubernetes resources.

All the charts are included in the folder “charts”. Every chart has the following structure:

Chart.yaml # A YAML file containing information about the chart
values.yaml # The default configuration values for this chart
chart/ # A directory containing any charts upon which this chart depends.
chart/templates/ # A directory of templates that, when combined with values,

will generate valid Kubernetes manifest files.

Chart.yaml
apiVersion: v1
appVersion: "1.0"
description: A Helm chart for deploying the Tango-Base on Kubernetes
name: tango-base
version: 0.1.0

example of values
tmcprototype:
enabled: true
image:

registry: nexus.engageska-portugal.pt/tango-example
image: tmcprototype
tag: latest
pullPolicy: Always

1.1 Update chart settings.

In some cases you may want to alter the settings applied in the chart. E.g To set the Elastic index lifetime management
policy to keep logs for 2 days, update values.yaml to the following:

3

project-name Documentation, Release 0.1.0

elastic:
enabled: true
image:
registry: docker.elastic.co
image: elasticsearch/elasticsearch
tag: 7.4.2
pullPolicy: IfNotPresent

ilm:
rollover:
max_size: "1gb"
max_age: "2d" # Update here
delete:
min_age: "1d"

More information available here. Helm Glossare here <https://helm.sh/docs/glossary/>‘_.

4 Chapter 1. Helm

https://helm.sh/docs/
https://helm.sh/docs/glossary/

CHAPTER 2

SKAMPI - SKA Mvp Prototype Integration

2.1 K8s Concepts

The following are key concepts to understand the project:

• Namespace: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
#when-to-use-multiple-namespaces

• Pod: https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

• Service: https://kubernetes.io/docs/concepts/services-networking/service/

• StatefulSet: https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

• Ingress: https://kubernetes.io/docs/concepts/services-networking/ingress/

• IngressController: https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

• Traefik IngressController: https://docs.traefik.io/user-guide/kubernetes/

• PersistentVolume: https://kubernetes.io/docs/concepts/storage/persistent-volumes/

• PersistentVolumeClaim: https://kubernetes.io/docs/concepts/storage/persistent-volumes/
#persistentvolumeclaims

2.2 KubeCtl references

Overview: https://kubernetes.io/docs/reference/kubectl/overview/ Cheat Sheet: https://kubernetes.io/docs/reference/
kubectl/cheatsheet/

5

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-multiple-namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-multiple-namespaces
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://docs.traefik.io/user-guide/kubernetes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

project-name Documentation, Release 0.1.0

2.3 K8s Templates

Template files follow the standard conventions for writing Go templates (see the documentation for details). For
example, in the tango-base chart, the following files composes the templates for the generation of valid kubernetes
manifest files:

• tangodb.yaml: define a k8s service for maria db and a statefulset attached to it

• tangodb-pv.yaml: define a PersistentVolume and a PersistentVolumeClaim for the database service (tan-
godb.yaml)

• databaseds.yaml: define a k8s service for the device server Databaseds and a statefulset attached to it

• itango.yaml: define a k8s pod for interacting with other containers (for local testing purpose)

• jive.yaml: define a k8s pod for interacting with the tango jive tool (for local development purpose)

• logviewer.yaml: define a k8s pod for interacting with the tango logviewer tool (for local development purpose)

• tangotest.yaml: define a k8s pod for the tangotest device server

2.4 K8s Tags

Below there are the main tags that constitute every object in the k8s integration.

2.4.1 Metadata tag

Every yaml file has a metadata tag which specify some important information like:

• name: a string that uniquely identifies this object within the current namespace (see the identifiers docs). This
value is used in the path when retrieving an individual object.

• namespace: a namespace is a DNS compatible label that objects are subdivided into.

• labels: a map of string keys and values that can be used to organize and categorize objects

– app: unique name (equals to name above)

– chart: name of the chart

– release and heritage: used by helm for install/upgrade

2.4.2 Spec

Every yaml file has a spec tag which is used to set all the parameters for a specific object. For instance, in
databaseds.yaml the StatefulSet object specifies that the label ‘app’ should match with a specific value and that the
related service is the one specified in the tag ‘serviceName’.

selector:
matchLabels:
app: databaseds-{{ template "tango-base.name" . }}-{{ .Release.Name }}

serviceName: databaseds-{{ template "tango-base.name" . }}-{{ .Release.Name }}

6 Chapter 2. SKAMPI - SKA Mvp Prototype Integration

https://golang.org/pkg/text/template/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/ska-telescope/k8s-integration/blob/master/chart/templates/databaseds.yaml

project-name Documentation, Release 0.1.0

2.4.3 initContainers

A Pod can have multiple Containers running apps within it, but it can also have one or more Init Containers, which are
run before the app Containers are started. Check documentation for more information.

2.4.4 containers

The containers tag includes the containers that form the specific pod or object whithin k8s.

2.4. K8s Tags 7

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

project-name Documentation, Release 0.1.0

8 Chapter 2. SKAMPI - SKA Mvp Prototype Integration

CHAPTER 3

Environments

Two environments has been defined for the SKAMPI repository, namely “test” and “staging”, both deployed into a
k8s cluster linked in the Gitlab.

Those are visible in gitlab at this link and managed with schedule in the gitlab schedule tab.

3.1 Test environment

The test environment is deployed at every commit of the skampi repository. Every day it is scheduled a clean job (at 4
UTC am) ehich redeploy the entire project.

The primary ingress of this environment is the following link: http://integration.engageska-portugal.pt/

3.2 Staging environment

Staging environment is deployed only with scheduled job every 15 days.

9

https://gitlab.com/ska-telescope/skampi/-/clusters
https://gitlab.com/ska-telescope/skampi/-/environments
https://gitlab.com/ska-telescope/skampi/pipeline_schedules
http://integration.engageska-portugal.pt/

project-name Documentation, Release 0.1.0

10 Chapter 3. Environments

CHAPTER 4

Deployment

SCAMPI deployment must be robust, repeatable, and idempotent. We have multiple flavours of deployment for
different configurations.

4.1 Flavours

By running make in the command line, we can see all the targets and arguments (and their defaults) available.

[user@pc skampi]$ make
make targets:
Makefile:delete_all delete ALL of the helm chart release
Makefile:delete delete the helm chart release. @param: same as deploy_
→˓all, plus HELM_CHART
Makefile:delete_etcd Remove etcd-operator from namespace
Makefile:delete_gangway delete install gangway authentication for gitlab.
→˓@param: CLIENT_ID, CLIENT_SECRET, INGRESS_HOST, CLUSTER_NAME, API_SERVER_IP, API_
→˓SERVER_PORT
Makefile:delete_traefik delete the helm chart for traefik. @param: EXTERNAL_IP
...
make vars (+defaults):
dev-testing.mk:hostPort 2020
dev-testing.mk:k8_path $(shell echo ~/.minikube)
dev-testing.mk:kube_path $(shell echo ~/.kube)
Makefile:API_SERVER_IP $(THIS_HOST)## Api server IP of k8s

Makefile:API_SERVER_PORT 6443 # Api server port of k8s

All the next deployments are deployed using using the same makefile.

4.1.1 Deploy

Deploy only one Helm Chart available at charts directory.

11

project-name Documentation, Release 0.1.0

Basic arguments:

• KUBE_NAMESPACE - integration default

• HELM_CHART - tango-base default

make deploy KUBE_NAMESPACE=integration HELM_CHART=tmc-proto

4.1.2 Deploy All

Deploy every helm chart inside charts directory.

Basic parameters:

• KUBE_NAMESPACE - integration default

make deploy_all KUBE_NAMESPACE=integration

4.1.3 Deploy All with Order

Deploy every helm chart inside charts directory order by its dependencies.

Basic parameters:

• KUBE_NAMESPACE - integration default

• DEPLOYMENT_ORDER - tango-base cbf-proto csp-proto sdp-prototype tmc-proto oet webjive archiver dsh-
lmc-prototype logging skuid default

make deploy_ordered KUBE_NAMESPACE=integration

4.2 Parameters

In SKAMPI, we separated the parameters into two levels. The first one can change the behaviour of the makefile, and
the second level can only change the arguments in each chart.

4.2.1 Level 1

The first one is inside the Makefile of the repository and is the top priority meaning that it overrides all the parameters
in any level below. We have three ways to customize these parameters and they are prioritize in this order (from most
to last important):

1. Command-line arguments - make deploy_ord KUBE_NAMESPACE=integration;

2. PrivateRules.mak - Create this file and add arguments. Ex: HELM_CHART = logging;

3. Makefile defaults - All the defaults are available by running make in the command-line.

Please note that one of the parameter at this level is the DEPLOYMENT_ORDER which allow ability to select the charts
needed for a particular configuration of the deployment (the charts will be deployed in the order or this parameter).

12 Chapter 4. Deployment

project-name Documentation, Release 0.1.0

4.2.2 Level 2

The second level is specified with the Values Files.

The priority file is the root directory and goes along the deploy commands with values.yaml by default but that could
change using the VALUES argument in the makefile.

elastic:
enabled: false

fluentd:
enabled: false

kibana:
enabled: false

tests:
enabled: false

hdbppdb:
enabled: false

archiver:
enabled: false

minikube: true

This root values file overrides the values.yaml file inside each chart. All chart values files can also be changed to
customize your deployment needs.

In the skampi repository, there are 2 examples of values files, one that has everything enabled (pipeline.yaml) and
another one with has come charts disabled (values.yaml). The latter disable the logging chart and the archiver chart
and it has been thought for a minikube environment.

Please note that the two values file represent the minimum charts needed (values.yaml) for running all the fast tests
(mark=fast) while the other (pipeline.yaml) is the complete deployment of SKAMPI.

4.3 Forward Oriented Deployment

With the help of the above parameter levels it is possible to customize the deployment of SKAMPI. It is very important
to note that it is possible to deploy the charts incrementally (forward oriented).

4.3. Forward Oriented Deployment 13

https://helm.sh/docs/chart_template_guide/values_files/

project-name Documentation, Release 0.1.0

14 Chapter 4. Deployment

CHAPTER 5

Testing SKAMPI

This page is outdated, refer to the System Team for support.

The SKA MPI codebase ultimately holds all the information required to deploy and configure the complete prototype.
This information is encapsulated as a collection of Helm charts, Makefiles and any other scripts, components to support
its test and deployment.

This page outlines the various categories of testing and approaches one can employ to test various aspects of SKA
MPI prototype that can be implemented in this repository.

5.1 Minikube Testing Environment - EngageSKA Openstack

Minikube is a tool that makes it easy to run Kubernetes locally. Minikube runs a single-node Kubernetes cluster inside
a Virtual Machine (VM) in Openstack.

5.1.1 Create a Virtual Machine

The first step is to create a Virtual Machine in EngageSKA Openstack: https://developerskatelescopeorg.readthedocs.
io/en/latest/services/ait_performance_env.html. The recommended specifications are:

• Volume Size: 100 GB

• Image: Ubuntu 18.04 LTS Jan/2020

• Flavor: m2.small

Don’t forget to associate your public key or generate a new key pair in the Key Pair section.

Next, go to the Instances section and create a new floating IP (dropdown on the right).

15

https://helm.sh/
https://developerskatelescopeorg.readthedocs.io/en/latest/services/ait_performance_env.html
https://developerskatelescopeorg.readthedocs.io/en/latest/services/ait_performance_env.html

project-name Documentation, Release 0.1.0

5.1.2 Create and test the environment

Install ansible inside the VM and run the ansible-playbooks for creating a development environment and the SHAMPI
environment:

Install Ansible
sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt-get install
→˓ansible
Create Environment
git clone https://gitlab.com/ska-telescope/ansible-playbooks.git
cd ansible-playbooks
ansible-playbook -i hosts deploy_tangoenv.yml
ansible-playbook -i hosts deploy_skampi.yml

Verify if everything is running using kubectl get services -n integration:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
→˓ AGE
archiverdb-archiver-test NodePort 10.96.233.41 <none>
→˓3306:31305/TCP 5m27s
databaseds-tango-base-test NodePort 10.105.145.228 <none>
→˓10000:30897/TCP 5m24s
elastic-logging-test NodePort 10.103.79.41 <none>
→˓9200:31976/TCP 5m26s
etcd-restore-operator ClusterIP 10.100.7.96 <none> 19999/
→˓TCP 5m28s
jupyter-oet-test NodePort 10.105.61.127 <none>
→˓8888:32025/TCP 5m26s
kibana-logging-integration-test ClusterIP 10.102.79.54 <none> 5601/
→˓TCP 5m26s
mongodb-webjive-test ClusterIP None <none> 27017/
→˓TCP 5m23s
rest-oet-test ClusterIP None <none> 5000/
→˓TCP 5m25s
ssh-oet-test NodePort 10.97.46.250 <none>
→˓22:30520/TCP 5m25s
tango-rest-tango-base-test NodePort 10.99.6.220 <none>
→˓8080:32490/TCP 5m24s
tangodb-tango-base-test NodePort 10.103.4.193 <none>
→˓3306:31154/TCP 5m24s
test-sdp-prototype-etcd ClusterIP None <none> 2379/
→˓TCP,2380/TCP 3m18s
test-sdp-prototype-etcd-client ClusterIP 10.107.155.120 <none> 2379/
→˓TCP 3m18s
test-sdp-prototype-etcd-nodeport NodePort 10.107.127.158 <none>
→˓2379:30456/TCP 5m25s
vnc-tango-base-test NodePort 10.108.131.141 <none>
→˓5920:30658/TCP,6081:30662/TCP 5m24s
vscode-tango-base-test NodePort 10.107.133.184 <none>
→˓22:31214/TCP 5m24s
webjive-webjive-test ClusterIP 10.111.102.81 <none> 80/TCP,
→˓5004/TCP,3012/TCP,8080/TCP 5m23s

The next step is to reboot the system with sudo reboot and then ssh again into the VM.

Finally, download the SKAMPI repository and run the test in minikube:

16 Chapter 5. Testing SKAMPI

project-name Documentation, Release 0.1.0

#Remove the existing skampi directory
sudo rm -rd skampi/
Download and run test
git clone https://gitlab.com/ska-telescope/skampi.git
cd ansible-playbooks
ansible-playbook deploy_minikube.yml
cd ..
cd skampi/
make deploy_all KUBE_NAMESPACE=integration

5.2 Kubernetes Testing Environments

At the moment 3 k8s multi-node clusters are available for testing purpose:

Cluster name Information
engageska-k8s-master

• 1 master, 4 worker nodes
• working in the skampi pipeline
• A&A not available

engageska-k8s-v2
• 1 master, 2 worker nodes
• working in the skampi pipeline
• A&A available. To work with it the file /etc/hosts

has to be modified with the following lines:

192.168.93.46 gangway.kubernetes-v2.
→˓engageska-portugal.pt

kubernetes-cipro
• 1 master, 2 worker nodes
• not working in the skampi pipeline
• A&A available. To work with it the file /etc/hosts

has to be modified with the following lines:

192.168.93.46 gangway.kubernetes-cipro.
→˓engageska-portugal.pt

5.2.1 Kubectl setup

If a cluster has the A&A module enabled it is possible to generate the instructions to let the local kubectl work with
it. In order To do that, once modified the file /etc/hosts as explained above, open the [gangway](https://github.com/
heptiolabs/gangway) url for engageska-k8s-v2 or ‘kubernetes-cipro <http://gangway.kubernetes-cipro.engageska-
portugal.pt >‘_. The Sign In button will redirect to gitlab.com for authentication. Once authenticated it will appear
the set of commands to setup the local kubectl as shown below.

5.2. Kubernetes Testing Environments 17

https://github.com/heptiolabs/gangway
https://github.com/heptiolabs/gangway
http://gangway.kubernetes-v2.engageska-portugal.pt

project-name Documentation, Release 0.1.0

The following namespaces are available for use: “integration”, “sdp”, “csp”, “button”, “ncra”, “karoo”. For creating
new namespaces or for any authorization request, contact the system team.

5.3 Visual Studio Code Remote Access

Visual Studio Code Remote Development allows you to use a container, remote machine, or the Windows Subsystem
for Linux (WSL) as a full-featured development environment.

No source code needs to be on your local machine. Each extension in the Remote Development extension pack can
run commands and other extensions directly inside a container, in WSL, or on a remote machine so that everything
feels like it does when you run locally.

18 Chapter 5. Testing SKAMPI

project-name Documentation, Release 0.1.0

5.3.1 Install Extension

Before everything, we need to install the Remote Development extension from vscode.

5.3.2 Create SSH connection

On vscode, open the Remote-SSH: Open Configuration File..., copy and paste these properties:

Host connection-name # connection-name -> name of your connection, give any
→˓name you want

HostName IP # IP -> VM's floating IP
User ubuntu

Finally, with the command ssh connection-name starts the ssh connection.

5.3. Visual Studio Code Remote Access 19

project-name Documentation, Release 0.1.0

5.3.3 Connect to Openstack VM - Option 1

After you created a new ssh connection on your local machine: Create SSH connection.

After this, launch the remote extension inside vscode (bottom left icon or use the shortcut ctrl+shift+P) and
select Remote-SSH: Connect to Host... and select the connection-name you previously created.

5.3.4 Connect to Kubernetes - Option 2

The tango-base chart available in the skampi repository defines an ssh service which can be used within the vscode
extension. The service is deployed in the same IP as the host machine and the port can be discovered with the command
kubectl get services -n integration which will give you the following output:

kubectl get services -n integration
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
→˓ AGE
...
vscode-tango-base-test NodePort 10.107.133.184 <none>
→˓22:*PORT*/TCP 5m24s
...

Create new ssh connection on your local machine: Create SSH connection. But with this configuration parameters:

Host connection-name # connection_name -> name of your connection, give any
→˓name you want

HostName IP # IP -> VM's floating IP
Port port # port-> vscode server port
User tango

After this, launch the remote extension inside vscode (bottom left icon or use the shortcut ctrl+shift+P) and se-
lect Remote-SSH: Connect to Host... and select the connection-name you previously created. Please
request the password to the system team.

5.4 Testing Infrastructure as Code

There is a substantial amount of infrastructure and its constituent parts (e.g. Kubernetes resources and their configura-
tion) that forms part of The Telescope. This configuration is orthogonal to the functionality of the software components
that are deployed, but changes to them can result in faults in deployment and operation of the system.

Testing at the appropriate level will ensure faster feedback of changes, reducing frustration for everyone and ultimately
improve the quality of the system. Troubleshooting faults in a distributed system caused by a typo in configuration
is no fun!

To support different levels of testing, various different jobs are executed as part of the SKAMPI build pipeline and
some testware has been developed to aid in testing.

5.4.1 Pipeline Stages for Testing

The stages of the pipeline related to testing are outlined below:

20 Chapter 5. Testing SKAMPI

https://en.wikipedia.org/wiki/Testware

project-name Documentation, Release 0.1.0

Stage Description
Static_analysis Tests aspects of charts that do not require their deployment, e.g. linting
Unit_test [unit] Tests here might deploy them to an ephemeral test environment.
Test Tests to be executed in-cluster alongside the fully deployed SKAMPI prototype.

SKAMPI Gitlab CI Pipeline (as of January 2020):

5.4.2 Python testware

Some components have been developed to assist in testing the Helm charts using Python. They are intended to be
used with pytest as a test runner and there are currently three jobs in the pipeline that are configured to executed them,
filtered based on pytest markers:

Pipeline jobs

• helm-template-pytest runs as part of the Static_analysis stage in the pipeline executes Python tests marked with
no_deploy.

• chart-pytest runs as part of the Unit_test stage and will execute tests marked with the chart_deploy marker
[unit].

• chart-pytest-quarantine also runs during the Unit_test stage and executes tests marked with quarantine but
do not fail the build if they do.

Pytest configuration

As per convention, Pytest is will collect all tests placed in the /tests/ directory. The following markers are currently
defined (see /pytest.ini for more details):

no_deploy Indicates tests that will not require any resources to be deployed into a cluster. Generally, tests that
parse and transform the source chart templates.

chart_deploy Indicates tests that requires resources to be deployed into cluster such as the Helm chart under test
and any other collaborating testware.

quarantine Indicates tests that should be executed but not necessarily break the build. Should be used sparingly.

The following custom command-line flags can be passed to Pytest:

--test-namespace <namespace> Specify the namespace to use in the test session. Defaults to ci.

--use-tiller-plugin Indicates that all commands to Helm should be prefixed with helm tiller run --.
Required when using the helm-tiller plugin.

5.4. Testing Infrastructure as Code 21

https://pipelinedriven.org/article/ephemeral-environment-why-what-how-and-where
http://pytest.org/
https://docs.pytest.org/en/latest/example/markers.html
https://github.com/rimusz/helm-tiller

project-name Documentation, Release 0.1.0

Test lifecycle

The lifecycle (setup, execute, teardown) of tests are managed by pytest fixtures, defined in /tests/conftest.py. The
infratest_context fixture in particular will determine if tests that involve deployments are included in the
pytest run, i.e. the chart_deploy marker is included. It will then:

1. invoke kubectl to create a namespace for the test resources(pods, services, etc.) to be deployed into

2. ensure this namespace is deleted after the test run

Note: the default namespace is ci, but can be overriden by specifying the custom pytest option,
--test-namespace. When running inside the pipeline, this flag is set to ci-$CI_JOB_ID so each job will
use its own namespace and resources, ensuring test isolation.

Test support

A collection of useful components and functions to assist in testing can be found in the tests.testsupport
module (/tests/testsupport/):

testsupport.util Functions that may be useful in testing such as wait_until which allows polling, retries and
timeouts.

testsupport.helm.HelmChart Represents a Helm chart that is the collection of YAML template files and not
necessarily a set of deployed Kubernetes resources. Primarily used to assist in testing the policies in YAML
specifications, i.e. no_deploy tests.

testsupport.helm.ChartDeployment Represents a deployed Helm chart and offers access to its resources
in-cluster their metadata (by querying the Kubernetes API server).

testsupport.helm.HelmTestAdaptor A rudimentary adaptor class to manage the interaction with the Helm
CLI.

testsupport.extras.EchoServer Represents a pod that can be deployed alongside the chart under test,
containing a basic Python HTTP server that can receive commands. Currently it only supports echoing any
HTTP POST sent to the /echo path. A handle to this is provided by the print_to_stdout method.

Charts are deployed via Helm and the HelmTestAdaptor. It’s available as a Pytest fixture or you can import it from the
tests.testsupport.helm module.

The ChartDeployment class is an abstraction to represent a deployed chart and offers access to its resources
in-cluster (by querying the Kubernetes API) and metadata (such as release_name).

In fact, instantiating a ChartDeployment in code will deploy the specified chart. A useful pattern is to create Pytest
fixture that represents the chart to be deployed and yields a ChartDeployment object. It can also call .delete()
to ensure the chart is deleted and Pytest fixture scope can be used to limit a chart’s lifespan. For an example of this see
the tango_base_release fixture in /tests/tango_base_chart_test.py.

The diagram below illustrates the relationship between the Python classes in test code, CLI tools and the cluster.

22 Chapter 5. Testing SKAMPI

project-name Documentation, Release 0.1.0

Running locally

Requirements:

• A Kubernetes cluster (minikube).

• kubectl authorized to create namespaces and deploy resources to the cluster.

• helm v3.0.2

• Python 3.7+

1. Install Python dependencies: pip install -r test-requirements.txt

2. Execute only the no_deploy tests: pytest -m "no_deploy and not quarantine"

3. Execute only the chart_deploy tests: pytest -m "chart_deploy and not quarantine"

4. Execute the quarantined tests: pytest -m quarantine

PyCharm integration

PyCharm as an IDE can be used to run and debug the tests, just be sure to edit the Run/Debug configuration so that it
has the appropriate “Additional Arguments” and “Working Directory” (SKAMPI root directory and not /tests).

5.4. Testing Infrastructure as Code 23

project-name Documentation, Release 0.1.0

Third-party libraries

The following third-party libraries are included in the test-requirements.txt and used by the tests and various supporting
testware components:

24 Chapter 5. Testing SKAMPI

project-name Documentation, Release 0.1.0

• python kubernetes client is the official kubernetes API client for Python. It’s provided as a pytest fixture,
k8s_api and also used by ChartDeployment to obtain a list of deployed pods(see get_pods method).

• testinfra is a library that allows connecting to pods and asserting on the state of various things inside them such
as open ports, directory structure, user accounts, etc.

• elasticsearch-py is the official, low-level Python client for ElasticSearch.

• requests is the popular HTTP client library.

5.4. Testing Infrastructure as Code 25

https://github.com/kubernetes-client/python
https://testinfra.readthedocs.io/en/latest/index.html
https://elasticsearch-py.readthedocs.io/en/master
http://python-requests.org/

project-name Documentation, Release 0.1.0

26 Chapter 5. Testing SKAMPI

CHAPTER 6

Triaging and managing Skampi bugs

This document defines a process for Triaging and managing Skampi bugs so that any SKA team member knows how
to handle the funnel of incoming bugs, the allocation, distribution and management of them.

The standard process for changing software includes the following phases:

• Problem/modification identification, classification, and prioritization

• Analysis

• Design

• Implementation

• Regression/system testing

• Acceptance testing

• Delivery

The above process is no different for triaging and managing a bug in skampi. In the present document we will focus
on how to identify a problem or bug from incoming information and event notifications and how to assign it to the
right team(s).

6.1 Problem identification

The problem identification phase starts when there is an indication of a failure. This information can be raised by a
developer (in any shared slack channel like the team-system-support) or by an alert in the following slack channels:

• ci-alerts-mvp

• prometheus-alerts

Any project member can join these channels to gain visibility of this information.

If the information comes from the ci-alerts-mvp then the primary source of detailed information for analysis are the
gitlab pipeline logs available here.

Other source of information are:

27

https://skasoftware.slack.com/archives/CEMF9HXUZ
https://skasoftware.slack.com/archives/CPWKQBZV2
https://skasoftware.slack.com/archives/C0110QW8YMQ
https://skasoftware.slack.com/archives/CPWKQBZV2
https://gitlab.com/ska-telescope/skampi/pipelines

project-name Documentation, Release 0.1.0

• kibana (require VPN)

• Node dashboard

• Gitlab runner dashboard

• Gitlab CI Pipeline dashboard

• Docker monitoring dashboard

• K8s cluster summary dashboard

• Ceph Cluster dashboard

• Elasticsearch dashboard

6.2 Allocating ownership to teams

The following are general rules for allocating ownership to teams:

• The primary responsibility for a failed pipeline is the owner of the first commit to the branch since the last
successful run of the pipeline. It is therfore the responsibility of the committer to follow up on the pipeline
status after each git push.

• For every test case failing, the creator(s) of the test must be involved in order to assign the bug to the appropriate
team.

• The System Team should be involved in the problem identification in order to understand whether the problem
is infrastructure related (related to a k8s cluster or any layer below it - docker, VM, virtualization etc).

• For prometheus alerts, the system team must provide the analysis of the alert details in order to understand the
cause, and give input into assigning it to the right team(s).

6.3 Raising bugs

Bugs are raised following the SKA Bug management guidelines.

28 Chapter 6. Triaging and managing Skampi bugs

http://192.168.93.94:5601/app/kibana
https://developer.skatelescope.org/en/latest/services/ait_performance_env.html#access-to-the-network-using-vpn
http://alerts.engageska-portugal.pt:3000/d/rYdddlPWk/node-exporter-full
http://alerts.engageska-portugal.pt:3000/d/jTW2jWQmz/gitlab-runner-monitoring?orgId=1&refresh=5s
http://alerts.engageska-portugal.pt:3000/d/gitlab_ci_pipeline_statuses/gitlab-ci-pipelines-statuses?orgId=1&refresh=30s
http://alerts.engageska-portugal.pt:3000/d/Kl_9tMRMk/docker-monitoring-with-node-selection?orgId=1
http://alerts.engageska-portugal.pt:3000/d/taQlRuxik/k8s-cluster-summary?orgId=1&refresh=30s
http://alerts.engageska-portugal.pt:3000/d/ZbYa7wqWk/ceph-cluster?orgId=1&refresh=30s
http://alerts.engageska-portugal.pt:3000/d/n_nxrE_mk/elasticsearch-dashboard?orgId=1&refresh=1m
https://developer.skatelescope.org/en/latest/development_practices/ska_testing_policy_and_strategy.html#bug-management

CHAPTER 7

Running X based application on SKAMPI

The X Window System is basically a client-server application that allow to display graphical content (i.e. window). In
order to allow a container inside the k8s cluster to display GUI we need to reference of the X server. This means that
we need to send the X authority file (environment variable XAUTHORITY) for authentication and the address of the
server for the communication (environment variable DISPLAY). The latter parameter contains also the indication of
the port of the server (if 0, the port is 6000, if 1 the port is 6001 and so on). Unfortunately the engageska cluster does
not allow that one of its servers connects outside the internal network at those ports.

7.1 OPTION #1

To avoid the problem, it is possible to use ssh and the X option enabled to connect the engage machine sharing the
socket for the X manager of the initial machine (laptop). There are few other options to set that has been included in the
deploy_tangoenv playbook. The tango-base chart is already equipped with the possibility to pass the XAUTHORITY
and DISPLAY parameters. The following is an example code to display jive:

ssh -X -i ~/cloud.key ubuntu@192.168.93.24
git clone https://gitlab.com/ska-telescope/skampi.git
cd skampi
make deploy KUBE_NAMESPACE=integration XAUTHORITY=~/.Xauthority DISPLAY=192.168.100.
→˓28:10

Note that the IP address 192.168.93.24 is the floating ip while the 192.168.100.28 is the internal private ip address.
The number 10 comes from the DISPLAY variable created by ssh.

7.2 OPTION #2

It is possible to enable some tango java applications just exposing few services of the k8s cluster. This is the case of
the hdb++ viewer where the exposed services are the archiverdb and the databaseds. In specific, it is possible to work
with it exporting the following environment variables:

29

https://developerskatelescopeorg.readthedocs.io/en/latest/services/ait_performance_env.html#engageska-cluster
https://gitlab.com/ska-telescope/ansible-playbooks#ansibleplaybook

project-name Documentation, Release 0.1.0

HDB_MYSQL_HOST=192.168.93.47
HDB_MYSQL_PORT=32642
HDB_NAME=hdbpp
HDB_PASSWORD=tango
HDB_TYPE=mysql
HDB_USER=tango
TANGO_HOST=192.168.93.47:32164

The port number for the archiver db (HDB_MYSQL_HOST) and for the tango database ds (TANGO_HOST) can be
found looking at the deploy_all output:

service/archiverdb-archiver-test NodePort 10.100.123.58 <none>
→˓3306:32370/TCP 10h
service/databaseds-tango-base-test NodePort 10.97.60.174 <none>
→˓10000:31088/TCP 10h

7.3 OPTION #3

The X Window System can also be installed into the container itself using a virtual screen. For this purpose it has been
developed a docker image called tango-vnc dockerfile to enable vnc and no vnc. It is possible to test this possibility in
the pipeline machine at the following link: http://192.168.93.47:31955/vnc.html where the port number (31955) can
be found in the deploy_all output:

service/vnc-tango-base-test NodePort 10.102.239.60 <none>
→˓5920:30040/TCP,6081:31955/TCP 10h

Please request the password to the system team. Once inside the container, it is possible to open jive with a new
terminal window as shown in the figure below.

30 Chapter 7. Running X based application on SKAMPI

https://gitlab.com/ska-telescope/skampi/-/jobs/431836031#L385
https://gitlab.com/ska-telescope/ska-docker/tree/master/docker/tango/tango-vnc
https://www.realvnc.com/
https://novnc.com/
http://192.168.93.47:31955/vnc.html
https://gitlab.com/ska-telescope/skampi/-/jobs/431836031#L385

CHAPTER 8

A&A

In this section there are some instruction on how it is possible to setup the A&A (Authentication and Authorization)
in k8s/minikube.

8.1 Static File Authentication

To enable authentication with static file in a minikube environment, start it with the following command (consult the
kubernetes documentation for the formatting of users.csv):

sudo -E minikube start --vm-driver=none \
--extra-config=kubelet.resolv-conf=/var/run/systemd/resolve/resolv.conf \
--extra-config=apiserver.basic-auth-file=/var/lib/minikube/certs/users.csv

8.2 OpenID Connect Tokens Authentication

To enable authentication with OpenID Connect Tokens in a minikube environment, for instance with Gitlab, start it
with the following command:

export CLIENT_ID=f84585f68a80c8d6292ec13bb691a19889d80635ffae4e821285c9d3c1980343
sudo -E minikube start --vm-driver=none \

--extra-config=kubelet.resolv-conf=/var/run/systemd/resolve/resolv.conf \
--extra-config=apiserver.authorization-mode=RBAC \
--extra-config=apiserver.oidc-issuer-url=https://gitlab.com \
--extra-config=apiserver.oidc-username-claim=sub \
--extra-config=apiserver.oidc-client-id=$CLIENT_ID

The parameter apiserver.oidc-client-id must correspond to the application id created in gitlab.

Once the minikube is started, to configure the kubectl tool, it is possible to use gangway. To install it:

31

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#static-password-file
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#static-password-file
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens)
https://gitlab.com/profile/applications
https://github.com/heptiolabs/gangway

project-name Documentation, Release 0.1.0

export from_gitlab_
→˓applicationid=f84585f68a80c8d6292ec13bb691a19889d80635ffae4e821285c9d3c1980343
export from_gitlab_
→˓applicationsecret=432899cbbb1f0d4dcbef60d38013e5cbfc5b0c6e60d3356207e811508a6ddebc
make gangway CLIENT_ID=$from_gitlab_applicationid \

CLIENT_SECRET=$from_gitlab_applicationsecret \
INGRESS_HOST=integration.engageska-portugal.pt \
API_SERVER_PORT=8443 \
API_SERVER_IP=xxx.xxx.xxx.xxx

The result will be a new ingress at the link gangway.integration.engageska-portugal.pt. Remember to modify the file
/etc/hosts adding the following lines:

xxx.xxx.xxx.xxx integration.engageska-portugal.pt
xxx.xxx.xxx.xxx gangway.integration.engageska-portugal.pt

The clusters available in skampi are enabled with the OpenID Connect Tokens Authentication.

32 Chapter 8. A&A

CHAPTER 9

Authorization

There are two possibilities for authorization in k8s: the first one is called RBAC (Role-based access control) and the
second one is called ABAC (Attribute-based access control).

9.1 RBAC

RBAC allows authorization based on the roles of individual users within an enterprise. A role contains a set of rules
which define * an API group (all the k8s api is divided into a set of groups), * a set of resources like pod, deployment
and so on, * a set of verbs like get, list and so on

Each role is related to the users with a resource called RoleBinding. The file roles.yaml shows an example of Role and
RoleBinding which make the user “matteo” able to work (do anything) on the “integration” namespace.

The clusters available in skampi are enabled with RBAC.

9.2 ABAC

ABAC allows authorization according to a set of policies which combine attributes together. The authorization policy
is specified into a file with format one JSON object per line. Each line is a policy object containing which specify
versioning information and specification, for example:

{"apiVersion": "abac.authorization.kubernetes.io/v1beta1",
"kind": "Policy",
"spec": {
"user": "matteo",
"namespace": "integration",
"resource": "",
"apiGroup": ""}}

33

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/abac/

project-name Documentation, Release 0.1.0

34 Chapter 9. Authorization

CHAPTER 10

KUBECONFIG

The command kubectl config view shows the current configuration of the running minikube instance. In order to
reproduce the PoC of this folder it is necessary to modify it adding the context for the user to access the local cluster
(the file kubeconfig shows how it has been modified). More information can be found here

35

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

project-name Documentation, Release 0.1.0

36 Chapter 10. KUBECONFIG

CHAPTER 11

Available resources

The folder called “resources” is a collection of resources used for testing and for configuration.

11.1 Makefile targets

This project contains a Makefile which defines the following targets:

Makefile target Description
vars Display variables - pass in DISPLAY and XAUTHORITY
k8s Which kubernetes are we connected to
k8s_test test the application on K8s
apply apply resource descriptor k8s.yml
get_versions lists the container images used for particular pods
logs POD logs for descriptor
rm delete applied resources
namespace create the kubernetes namespace
deploy_all deploy ALL of the helm chart
deploy_etcd deploy etcd-operator into namespace
deploy deploy the helm chart
show show the helm chart
delete_all delete ALL of the helm chart release
delete_etcd Remove etcd-operator from namespace
delete delete the helm chart release
traefik install the helm chart for traefik (in the kube-system namespace)
delete_traefik delete the helm chart for traefik
gangway install gangway authentication for gitlab (kube-system namespace)
delete_gangway delete gangway authentication for gitlab
poddescribe describe Pods executed from Helm chart
podlogs show Helm chart POD logs
localip set local Minikube IP in /etc/hosts file for apigateway
help Show the help summary

37

project-name Documentation, Release 0.1.0

11.2 Ansible

It is possible to setup a local SKAMPI environment using the ansible playbook available here.

11.2.1 Creating a K8s Web UI Dashboard

The resources available in this folder enable to create a dashboard (locally available on port 8001) for testing purpose.

The following lines are the commands to run to create it:

// create dashboard and add an admin user:
kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/aio/
→˓deploy/recommended/kubernetes-dashboard.yaml

// to access the dashboard it is needed a secret token
kubectl -n kube-system get secret
kubectl -n kube-system describe secret *token* // default generally called default-
→˓token-*****

kubectl proxy

More information on https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

It is also included an example of graphql query for the webjive application. The graphQl Engine is available in the
following path of the integration web server: /gql/graphiql/

11.2.2 Traefik

It is possible to install traefik in different ways:

Install using tiller
helm install stable/traefik --name traefik0 --namespace kube-system --set
→˓externalIP=xxx.xxx.xxx.xxx

or Install traefik controller manually (deprecated)
kubectl apply -f traefik-minikube.yaml

Install using the Makefile
make traefik EXTERNAL_IP=xxx.xxx.xxx.xxx

Note that the external ip should be the internal ip of the machine.

11.2.3 Ingress controller commands

The controller is in the kube-system namespace
kubectl get pods -n kube-system
kubectl logs -n kube-system *nginx-ingress-controller-name*
kubectl exec -it -n kube-system *nginx-ingress-controller-name* cat /etc/nginx/nginx.
→˓conf

Documentation Status

38 Chapter 11. Available resources

https://github.com/ska-telescope/ansible-playbooks#skampi
https://developer.skatelescope.org/projects/skampi/en/latest/?badge=latest

CHAPTER 12

SKA Integration on Kubernetes

The following are a set of instructions of running the SKA application on Kubernetes, and has been tested on minikube
v0.34.1 with k8s v1.13.3 on Ubuntu 18.04.

39

project-name Documentation, Release 0.1.0

40 Chapter 12. SKA Integration on Kubernetes

CHAPTER 13

Minikube

Using Minikube enables us to create a single node stand alone Kubernetes cluster for testing purposes. If you already
have a cluster at your disposal, then you can skip forward to ‘Running the SKA Integration on Kubernetes’.

The generic installation instructions are available at https://kubernetes.io/docs/tasks/tools/install-minikube/.

Minikube requires the Kubernetes runtime, and a host virtualisation layer such as kvm, virtualbox etc. Please refer to
the drivers list at https://github.com/kubernetes/minikube/blob/master/docs/drivers.md .

On Ubuntu 18.04 for desktop based development, the most straight forward installation pattern is to go with the none
driver as the host virtualisation layer. CAUTION: this will install Kubernetes directly on your host and will destroy any
existing Kubernetes related configuration you already have (eg: /etc/kubernetes, /var/lib/kubelet, /etc/cni, . . .). This is
technically called ‘running with scissors’, but the trade off in the authors opinion is lower virtualisation overheads and
simpler management of storage integration including Xauthority details etc.

The latest version of minikube is found here https://github.com/kubernetes/minikube/releases . Scroll down to the
section for Linux, which will have instructions like:

curl -Lo minikube https://storage.googleapis.com/minikube/releases/v1.2.0/minikube-
→˓linux-amd64 && chmod +x minikube && sudo mv minikube /usr/local/bin/

Now we need to bootstrap minikube so that we have a running cluster based on kvm:

sudo -E minikube start --vm-driver=none --extra-config=kubelet.resolv-conf=/var/run/
→˓systemd/resolve/resolv.conf

This will take some time setting up the vm, and bootstrapping Kubernetes. You will see output like the following when
done.

$ sudo -E minikube start --vm-driver=none --extra-config=kubelet.resolv-conf=/var/run/
→˓systemd/resolve/resolv.conf
minikube v0.34.1 on linux (amd64)
Configuring local host environment ...

The 'none' driver provides limited isolation and may reduce system security and
→˓reliability.

(continues on next page)

41

https://kubernetes.io/docs/getting-started-guides/minikube/

project-name Documentation, Release 0.1.0

(continued from previous page)

For more information, see:
https://github.com/kubernetes/minikube/blob/master/docs/vmdriver-none.md

kubectl and minikube configuration will be stored in /home/ubuntu
To use kubectl or minikube commands as your own user, you may
need to relocate them. For example, to overwrite your own settings:

sudo mv /home/ubuntu/.kube /home/ubuntu/.minikube $HOME
sudo chown -R $USER /home/ubuntu/.kube /home/ubuntu/.minikube

This can also be done automatically by setting the env var CHANGE_MINIKUBE_NONE_
→˓USER=true
Creating none VM (CPUs=2, Memory=2048MB, Disk=20000MB) ...
"minikube" IP address is 192.168.86.29
Configuring Docker as the container runtime ...
Preparing Kubernetes environment ...

kubelet.resolv-conf=/var/run/systemd/resolve/resolv.conf
Pulling images required by Kubernetes v1.13.3 ...
Launching Kubernetes v1.13.3 using kubeadm ...
Configuring cluster permissions ...
Verifying component health
kubectl is now configured to use "minikube"
Done! Thank you for using minikube!

The --extra-config=kubelet.resolv-conf=/var/run/systemd/resolve/resolv.conf flag is
to deal with the coredns and loopback problems - you may not need this depending on your local setup.

Now fixup your permissions:

sudo chown -R ${USER} /home/${USER}/.minikube
sudo chgrp -R ${USER} /home/${USER}/.minikube
sudo chown -R ${USER} /home/${USER}/.kube
sudo chgrp -R ${USER} /home/${USER}/.kube

Once completed, minikube will also update your kubectl settings to include the context current-context:
minikube in ~/.kube/config. Test that connectivity works with something like:

$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
coredns-86c58d9df4-5ztg8 1/1 Running 0 3m24s
...

13.1 Helm Chart

The Helm Chart based install of the SKA Integration relies on Helm (surprise!). The easiest way to install is using the
install script:

curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get | bash

13.2 Cleaning Up

Note on cleaning up:

42 Chapter 13. Minikube

https://docs.helm.sh/using_helm/#installing-helm

project-name Documentation, Release 0.1.0

minikube stop # stop minikube - this can be restarted with minikube start
minikube delete # destroy minikube - totally gone!
rm -rf ~/.kube # local minikube configuration cache
remove all other minikube related installation files
sudo rm -rf /var/lib/kubeadm.yaml /data/minikube /var/lib/minikube /var/lib/kubelet /
→˓etc/kubernetes

13.3 Running the SKA Integration on Kubernetes

Note: your Xserver needs to allow TCP connections. This will be different for each window manager, but on Ubuntu
18.04 using gdm3 it can be enabled by editing /etc/gdm3/custom.conf and adding:

[security]
DisallowTCP=false

In order for these changes to take effect you will need to restart X (it’s just easier to reboot. . .).

Once the Helm client is installed (from above) and TCP based Xserver connections are enabled, change to the k8s/
directory. The basic configuration for each component of the Integration is held in the values.yaml file of each
chart.

The mode that we are using Helm in here is purely for templating - this avoids the need to install the Tiller process
on the Kubernetes cluster, and we don’t need to be concerend about making it secure (requires TLS and the setup of a
CA).

On for the main event - we launch the Integration with:

$ make deploy_all KUBE_NAMESPACE=integration

Or we can launch each chart separately with:

$ make deploy KUBE_NAMESPACE=integration HELM_CHART=tango-base
$ make deploy KUBE_NAMESPACE=integration HELM_CHART=tmc-proto
$ make deploy KUBE_NAMESPACE=integration HELM_CHART=webjive

etc.

This will give extensive output describing what has been deployed in the test namespace:

kubectl describe namespace integration || kubectl create namespace integration
Name: integration
Labels: <none>
Annotations: <none>
Status: Active

No resource quota.

No resource limits.
configmap/tango-config-script-integration-tmc-webui-test created
persistentvolume/rsyslog-integration-tmc-webui-test created
persistentvolumeclaim/rsyslog-integration-tmc-webui-test created
persistentvolume/tangodb-integration-tmc-webui-test created
persistentvolumeclaim/tangodb-integration-tmc-webui-test created
service/databaseds-integration-tmc-webui-test created
statefulset.apps/databaseds-integration-tmc-webui-test created
service/rsyslog-integration-tmc-webui-test created

(continues on next page)

13.3. Running the SKA Integration on Kubernetes 43

project-name Documentation, Release 0.1.0

(continued from previous page)

statefulset.apps/rsyslog-integration-tmc-webui-test created
service/tangodb-integration-tmc-webui-test created
statefulset.apps/tangodb-integration-tmc-webui-test created
service/webjive-integration-tmc-webui-test created
ingress.extensions/webjive-integration-tmc-webui-test created
statefulset.apps/webjive-integration-tmc-webui-test created
pod/tangotest-integration-tmc-webui-test created
pod/tmcprototype-integration-tmc-webui-test created

Please wait patiently - it will take time for the Container images to download, and for the database to initialise. After
some time, you can check what is running with:

watch kubectl get all,pv,pvc,ingress -n integration

Which will give output like:

Every 2.0s: kubectl get all,pv,pvc -n integration osboxes: Fri Mar 29
→˓09:25:05 2019

NAME READY STATUS RESTARTS
→˓AGE
pod/databaseds-integration-tmc-webui-test-0 1/1 Running 3
→˓117s
pod/rsyslog-integration-tmc-webui-test-0 1/1 Running 0
→˓117s
pod/tangodb-integration-tmc-webui-test-0 1/1 Running 0
→˓117s
pod/tangotest-integration-tmc-webui-test 1/1 Running 2
→˓117s
pod/tmcprototype-integration-tmc-webui-test 4/5 CrashLoopBackOff 2
→˓117s
pod/webjive-integration-tmc-webui-test-0 4/4 Running 0
→˓117s

NAME TYPE CLUSTER-IP EXTERNAL-
→˓IP PORT(S) AGE
service/databaseds-integration-tmc-webui-test ClusterIP None <none>
→˓ 10000/TCP 117s
service/rsyslog-integration-tmc-webui-test ClusterIP None <none>
→˓ 514/TCP,514/UDP 117s
service/tangodb-integration-tmc-webui-test ClusterIP None <none>
→˓ 3306/TCP 117s
service/webjive-integration-tmc-webui-test NodePort 10.100.50.64 <none>
→˓ 8081:31171/TCP 117s

NAME READY AGE
statefulset.apps/databaseds-integration-tmc-webui-test 1/1 117s
statefulset.apps/rsyslog-integration-tmc-webui-test 1/1 117s
statefulset.apps/tangodb-integration-tmc-webui-test 1/1 117s
statefulset.apps/webjive-integration-tmc-webui-test 1/1 117s

NAME CAPACITY ACCESS MODES
→˓RECLAIM POLICY STATUS CLAIM
→˓STORAGECLASS REASON AGE
persistentvolume/rsyslog-integration-tmc-webui-test 10Gi RWO
→˓Retain Bound integration/rsyslog-integration-tmc-webui-test standard
→˓ 117s

(continues on next page)

44 Chapter 13. Minikube

project-name Documentation, Release 0.1.0

(continued from previous page)

persistentvolume/tangodb-integration-tmc-webui-test 1Gi RWO
→˓Retain Bound integration/tangodb-integration-tmc-webui-test standard
→˓ 117s

NAME STATUS VOLUME
→˓ CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/rsyslog-integration-tmc-webui-test Bound rsyslog-
→˓integration-tmc-webui-test 10Gi RWO standard 117s
persistentvolumeclaim/tangodb-integration-tmc-webui-test Bound tangodb-
→˓integration-tmc-webui-test 1Gi RWO standard 117s

NAME HOSTS ADDRESS
→˓ PORTS AGE
ingress.extensions/webjive-integration-tmc-webui-test integration.ska 193.204.1.
→˓157 80 117s

If you find that sdp-prototype containers are failing, check whether there is a test-sdp-prototype-etcd pod
running. If there is not, try running

$ make deploy_all KUBE_NAMESPACE=integration

again.

To clean up the Helm Chart release:

$make delete_all KUBE_NAMESPACE=integration

13.3. Running the SKA Integration on Kubernetes 45

project-name Documentation, Release 0.1.0

46 Chapter 13. Minikube

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

47

project-name Documentation, Release 0.1.0

48 Chapter 14. Indices and tables

Bibliography

[unit] A unit in this context is a Helm chart that can be deployed and tested.

49

	Helm
	Update chart settings.

	SKAMPI - SKA Mvp Prototype Integration
	K8s Concepts
	KubeCtl references
	K8s Templates
	K8s Tags

	Environments
	Test environment
	Staging environment

	Deployment
	Flavours
	Parameters
	Forward Oriented Deployment

	Testing SKAMPI
	Minikube Testing Environment - EngageSKA Openstack
	Kubernetes Testing Environments
	Visual Studio Code Remote Access
	Testing Infrastructure as Code

	Triaging and managing Skampi bugs
	Problem identification
	Allocating ownership to teams
	Raising bugs

	Running X based application on SKAMPI
	OPTION #1
	OPTION #2
	OPTION #3

	A&A
	Static File Authentication
	OpenID Connect Tokens Authentication

	Authorization
	RBAC
	ABAC

	KUBECONFIG
	Available resources
	Makefile targets
	Ansible

	SKA Integration on Kubernetes
	Minikube
	Helm Chart
	Cleaning Up
	Running the SKA Integration on Kubernetes

	Indices and tables
	Bibliography

